

Закрытое акционерное общество «Научно-производственное предприятие «Автоматика»

ОКПД2 26.51.53.120

АНАЛИЗАТОР ЖИДКОСТИ КОНДУКТОМЕТРИЧЕСКИЙ АЖК-3110

Руководство по эксплуатации АВДП.414311.004.01РЭ

По вопросам продаж и поддержки обращайтесь:

Архангельск +7 (8182) 45-71-35 Астрахань +7 (8512) 99-46-80 Барнаул +7 (3852) 37-96-76 Белгород +7 (4722) 20-58-80 Брянск +7 (4832) 32-17-25 Владивосток +7 (4232) 49-26-85 Волгоград +7 (8442) 45-94-42 Екатеринбург +7 (343) 302-14-75 Ижевск +7 (3412) 20-90-75 Казань +7 (843) 207-19-05 Калуга +7 (4842) 33-35-03

Кемерово +7 (3842) 21-56-70 Киров +7 (8332) 20-58-70 Краснодар +7 (861) 238-86-59 Красноярск +7 (391) 989-82-67 Курск +7 (4712) 23-80-45 Липецк +7 (4742) 20-01-75 Магнитогорск +7 (3519) 51-02-81 Москва +7 (499) 404-24-72 Мурманск +7 (8152) 65-52-70 Наб.Челны +7 (8552) 91-01-32 Ниж.Новгород +7 (831) 200-34-65 Новосибирск +7 (383) 235-95-48 Омск +7 (381) 299-16-70 Орел +7 (4862) 22-23-86 Оренбург +7 (3532) 48-64-35 Пенза +7 (8412) 23-52-98 Пермь +7 (342) 233-81-65 Ростов-на-Дону +7 (863) 309-14-65 Рязань +7 (4912) 77-61-95 Самара +7 (846) 219-28-25 Санкт-Петербург +7 (812) 660-57-09 Саратов +7 (845) 239-86-35

Сочи +7 (862) 279-22-65 Ставрополь +7 (8652) 57-76-63 Сургут +7 (3462) 77-96-35 Тверь +7 (4822) 39-50-56 Томск +7 (3822) 48-95-05 Тула +7 (4872) 44-05-30 Тюмень +7 (3452) 56-94-75 Ульяновск +7 (8422) 42-51-95 Уфа +7 (347) 258-82-65 Хабаровск +7 (421) 292-95-69 Челябинск +7 (351) 277-89-65 Ярославль +7 (4852) 67-02-35

сайт: avtomatika.pro-solution.ru | эл. почта: avk@pro-solution.ru телефон: 8 800 511 88 70

г. Владимир

!"#\$ %&'% %()*+#,-%. % /01

Оглавление

Введение	4
1 Назначение	4
2 Технические данные	5
3 Состав изделия	8
4 Устройство и работа анализатора	8
5 Обеспечение взрывозащиты	.10
6 Указания мер безопасности	11
7 Параметры предельных состояний	11
8 Подготовка к работе и порядок работы	11
9 Режимы работы анализатора	.12
10 Возможные неисправности и способы их устранения	14
11 Техническое обслуживание, поверка, калибровка	14
12 Маркировка, упаковка, транспортирование и хранение	14
13 Гарантии изготовителя	16
14 Сведения о рекламациях	.16
Приложение А Габаритные и монтажные размеры	.17
Приложение В Вид со стороны передней и задней панели	20
Приложение С Схемы внешних соединений	.21
Приложение D Шифр заказа	23
Приложение Е Перечень ситуаций, идентифицируемых анализатором как ошибка измерения.	.24
Приложение F Режим «Настройка»	.25
Приложение G Ускоритель фильтра	

	!					(
("	+		"# \$!			
-"	. "/(%&'			
2 &	3 ((() " *	0 12	1(1	
4 (((())			

Введение

Настоящее руководство по эксплуатации предназначено для изучения устройства и обеспечения правильной эксплуатации анализатора жидкости кондуктометрического типа АЖК-3110 (далее - анализатор), предназначенного для работы с контактными датчиками удельной электрической проводимости (далее — УЭП).

Описывается назначение, принцип действия, устройство, приводятся технические характеристики, даются сведения о порядке работы с анализатором, настройке и проверке технического состояния.

Поверке подлежат анализаторы, предназначенные для применения в сферах распространения регулирования обеспечения единства измерений.

Калибровке подлежат анализаторы, не предназначенные для применения в сферах распространения регулирования обеспечения единства измерений.

Поверка (калибровка) проводится по методике, изложенной в документе «Анализаторы жидкости кондуктометрические АЖК-31. Методика поверки АВДП.406233.003/1 МП».

Анализаторы выпускаются по ТУ 4215-046-10474265-2009.

1 Назначение

1.1 Анализатор предназначен для измерения и контроля удельной электрической проводимости (далее – УЭП) растворов кислот, щелочей, солей и других растворов, не образующих на электродах датчика пленку, цифровой индикации измеренного значения и сигнализации о выходе измеренного значения за пределы заданных значений. анализатор может работать в локальной сети Modbus (RTU, ASCII) (опция) или подключаться к измерительному пробору посредством токовой петли (опция).

1.2 Анализаторы являются программируемыми в части выбора режимов измерения, индикации и диапазона преобразования измеренного значения в выходной токовый сигнал (если заказана данная опция) и параметров цифрового интерфейса (если заказана данная опция).

1.3 Анализаторы выпускаются в двух исполнениях:

- с аналоговым выходом типа «Токовая петля»;

- с цифровым выходом - интерфейс RS-485, протокол ModBus.

#\$ %&++))

1.4 Анализатор состоит из электронного блока и датчика.

1.5 Условия эксплуатации анализатора:

- температура окружающего воздуха

(5... 50) C; 80 %:

- относительная влажность окружающего воздуха до

– атмосферное давление

от 84 до 106 кПа.

1.6 Анализаторы АЖК-3110.х.И-Ех имеют вид взрывозащиты «взрывонепроницаемая оболочка» с маркировкой «1Ех d IIB T6 Х» по ГОСТ IEC 60079-1-2011 и могут устанавливаться во взрывоопасных зонах класса 1.

Знак «Х» в маркировке взрывозащиты обозначает, что при монтаже и эксплуатации анализаторов необходимо принимать меры защиты от электростатических зарядов и превышения допустимого предела температуры наружной части защитной арматуры анализаторов для температурного класса Т6.

! #\$ %&'&())* #\$ %&++) , #\$ %&'&())*)/ 0 #\$ %&++))/ 0)

1.7 По защищённости от проникновения пыли и воды анализатор имеет исполнение IP65 по ГОСТ 14254-2015.

1.8 Исполнение по устойчивости к механическим воздействиям соответствует группе V2 по ГОСТ 52931-08.

2 Технические данные

2.1 Диапазоны измерения.

Диапазоны измерения в зависимости от модификации указаны в таблице 1.

Таблица 1 - Диапазоны измерения

Назначение	Модификация	Диапазон измерения
	АЖК-3110.1	(0,0001,000) мкСм/см (0,0010,00) мкСм/см (0,0100,0) мкСм/см (01000) мкСм/см
Анализатор у ЭП	АЖК-3110.2	(0,0001,000) мСм/см (0,0010,00) мСм/см (0,0100,0) мСм/см (01000) мСм/см
Анализатор концентрации растворов солей, кислот и щелочей	АЖК-3110.К	(020) %; (0230) г/л (NaCl) (025) %, (9599) % (H ₂ SO ₄); (015) % (HCl); (020) % (HNO ₃); (010) %, (2040) % (NaOH); (020) % (KOH)

2

3

)

3

3

2.2 Предел допускаемого значения основной приведённой погрешности: - у анализаторов УЭП не более ±2,0 %;

– у анализаторов концентрации оговаривается при заказе в зависимости от диапазона измерения и состава анализируемой жидкости, но не более ±5,0 %.

2.3 Предел допускаемого значения дополнительной приведённой погрешности, вызванной изменением температуры окружающего воздуха на 10 С в диапазоне температур, указанном в п. 1.5, не более $\pm 1,0$ %.

2.4 Диапазон измерения температуры анализируемой жидкости (0..150) °С.

2.5 Предел допускаемого значения абсолютной погрешности при измерении температуры анализируемой жидкости, не более:

– в диапазоне (0 50) °С	±0,5 °C;
– в диапазоне (50 100) °С	±1,0 °C;
– в диапазоне (100 150) °С	±2,0 °C.

2.6 Предел допускаемого значения дополнительной приведённой погрешности, вызванной изменением температуры анализируемой жидкости на ± 15 С относительно температуры приведения (при включенной термокомпенсации), не более $\pm 2,0$ %.

2.7 Диапазон температуры анализируемой жидкости	(5 120) °C.
---	-------------

2.8 Давление анализируемой жидкости, не более 1,6 МПа.

2.9 Вязкость анализируемой жидкости должна быть не более 0,2 Па×с.

2.10 Индикация показаний УЭП (концентрации) и температуры производится по четырёхразрядному семисегментному светодиодному индикатору. Цвет индикатора красный или зелёный.

2.11 Аналоговый выходной сигнал (если имеется в анализаторе).

2.11.1 Выходной унифицированный сигнал постоянного тока (выбирается программно), мА: (0... 5); (0... 20); (4... 20).

2.11.2 Сопротивление нагрузки зависит от напряжения питания, и вычисляется по формуле:

$$2 \qquad \frac{3_4}{5_{67}}$$
 ,

где R_{н.макс} – максимальное сопротивление нагрузки, кОм;

U_{пит} – напряжение питания, В;

I_{max} – максимальный выходной ток 5 мА, 20 мА и 20 мА (для диапазонов (0... 5) мА, (0... 20) мА и (4... 20) мА соответственно).

6

2.11.3 Подключение анализатора осуществляется при помощи четырёхпроводного кабеля. Сечение жил кабеля от 0,35 мм² до 1,0 мм². Длина линии связи ло 800 м.

2.12 Цифровой интерфейс (если имеется в анализаторе).

2.12.1 Физический уровень

RS-485

2.

протокол Modbus RTU или Modbus ASCII. 2.12.2 Канальный уровень

2.12.3 Скорость обмена

от 1,2 Кбод до 115,2 Кбод.

Выбор протокола, скорости обмена и других параметров интерфейса производится программно (Приложение F, п. F.5).

2.12.4 Частота обновления регистров «результат измерения» (для локаль-5 Гп. ной сети)

2.13 Инликация.

2.13.1 Индикация измеряемого параметра осуществляется четырёхразрядным семисегментным светодиодным индикатором в абсолютных единицах. Цвет индикатора зелёный или красный (выбирается при заказе анализатора).

2.13.2 Светодиодные единичные индикаторы:

единичный двухцветный индикатор связи через цифровой интерфейс;

- единичный индикатор зелёного цвета для индикации отображения температуры на индикаторе.

2.13.3 Частота обновления индикации: 2 Гп.

2.13.4 Усреднение измеренного значения входного сигнала обеспечивается фильтром со скользящим окном. При измерении удельной электропроводимости и температуры пользователем задаётся количество измерений для усреднения от одного до 30.

2.14 Управление.

2.14.1 Ручное управление посредством четырёх кнопок и четырёхсимвольного индикатора с использованием меню.

2.14.2 Управление от системы верхнего уровня через локальную сеть (если установлена опция цифровой интерфейс).

2.15 Электропитание.

2.15.1 Питание анализатора осуществляется от сети постоянного тока от 12 до 35 В. напряжением

2.15.2 Потребляемая мощность не более **3**Вт

2.16 Показатели надёжности.

2.16.1 Анализатор рассчитан на круглосуточную работу. Время готовности к работе после включения электропитания не более 15 мин.

2.16.2 Анализатор относится к ремонтируемым и восстанавливаемым изделиям.

7]			
]			

2.16.3 Cp	едняя наработ	ка на отказ				20 000 ч
2.16.4 Cp	едний срок слу	ужбы				12 лет.
3 Состав	в изделия					
3.1 В ком	иплект поставк	и входят:				
– анализатор А	ЖК-3110					1 шт;
- руководство г	по эксплуатаци	И				1 экз;
– руководство г	по примененик	о (при налич	нии цифровог	то интерф	ейса)	1 экз;
- методика пов	ерки (калибров	зки)				1 экз;
– паспорт						1 экз.
	4	&	3)	3,		
-		- &'	,			
)						

3.2 Приложение D содержит шифр заказа.

Пример оформления заказа:

«АЖК-3110.1.И.ПР.А.КР – анализатор жидкости кондуктометрический АЖК-3110.1 с диапазоном измерения от (0...1) мкСм/см до (0...1000) мкСм/см, обычное исполнение, дуралюминиевый корпус с порошковым покрытием и прозрачным стеклом, тип датчика - проточный, выходной аналоговый сигнал, диапазон преобразования выходного сигнала (0...50) мкСм/см, цвет индикатора красный.

4 Устройство и работа анализатора

4.1 Устройство анализатора.

4.1.1 Анализатор конструктивно состоит из корпуса, в котором размещён электронный блок, и контактного кондуктометрического датчика для измерения УЭП анализируемой жидкости.

4.1.2 Анализатор состоит из двух печатных плат: платы индикации и основной платы, соединённых между собой при помощи плоского кабеля.

4.1.3 На основной плате расположены: разъёмы для подключения питания и датчика, аналоговый выход (если заказана данная опция) и гальванически развязанная от питающей сети измерительная часть.

4.1.4 На плате индикации расположен блок питания, элементы управления и индикации.

4.1.5 На передней панели (Приложение В, Рисунок В.1) расположены следующие элементы:

 – цифровой четырёхразрядный индикатор измеряемой величины и установленных параметров;

- светодиодный двухцветный единичный индикатор обмена по интерфейсу «**RS**»;

- светодиодный красный единичный индикатор температуры «Т»;

- - кнопка отмены изменений или выхода из меню;

 - кнопка выбора нужного разряда индикатора (при вводе числовых значений) или движение по меню.

- - кнопка изменения числа в выбранном разряде индикатора (при вводе числовых значений) или движения по меню.

- - кнопка сохранения изменений или входа в выбранное меню.

4.1.6 На задней панели (Приложение В, Рисунок В.2) расположены разъёмы для подключения напряжения питания, входных и выходных сигналов.

4.2 Принцип действия анализатора.

Принцип действия анализатора основан на измерении электрической проводимости жидкости при подаче переменного электрического напряжения на электроды контактного датчика.

УЭП жидкости вычисляется по формуле:

$$\boldsymbol{a} = \boldsymbol{\sigma} \mathbf{C}, \tag{1}$$

где a - УЭП, См/см;

σ-измеряемая проводимость, См;

C – постоянная датчика, определяемая его размерами, см $^{-1}$.

Подвижность ионов в жидкостях существенно зависит от температуры, поэтому с повышением температуры УЭП возрастает.

Температурная зависимость УЭП водных растворов в большинстве случаев может быть определена по формуле:

$$\mathfrak{a} = \mathfrak{a}_0[1 + (t - t_0) \alpha_t]$$
или $\mathfrak{a} = \mathfrak{a}_0[1 + (t - t_0) \beta_t]$
(2)

где æ – УЭП при рабочей температуре t, См/см;

æ₀ – УЭП при температуре приведения термокомпенсации t₀, См/см;

t – температура анализируемой жидкости, °С;

t₀ – температура приведения термокомпенсации, °C;

- α_t температурный коэффициент УЭП, °С ⁻¹, для случая (t t₀) < 0;
- β_t температурный коэффициент УЭП, °С ⁻², для случая (t t₀) > 0.

Анализатор представляет собой законченное изделие, функциональные и метрологические характеристики которого определяют технические данные анализатора в целом.

Анализаторы в зависимости от модификации имеют различия в постоянных датчиков, в настройках электронных блоков и элементах схемы.

Термокомпенсация измеренного значения УЭП возможна в двух вариантах:

- термокомпенсация выключена;

 – включена простая термокомпенсация с возможностью установки температурных коэффициентов и температуры приведения [смотри формулу (2)].

			0
			0

4.2.1 Входной сигнал анализатор преобразует в цифровой код, выводит на индикатор, а также преобразует в аналоговый сигнал постоянного тока.

4.2.2 Анализатор представляет собой микроконтроллерное устройство. Один микроконтроллер обрабатывает сигнал с датчика, обеспечивая аналогоцифровое преобразование. Второй микроконтроллер обеспечивает управление клавиатурой, индикаторами и обменом данными по локальной сети.

4.2.3 При наличии интерфейса возможно считывание результатов измерения и управление анализатором по локальной сети Modbus. Приборная панель имеет приоритет в управлении анализатором.

5 Обеспечение взрывозащиты

5.1 Вид взрывозащиты «взрывонепроницаемая оболочка» приборов АЖК-3110.х.И-Ех (ПП анализаторов АЖК-3101М.х.Э.И-Ех, АЖК-3122.х.И-Ех) обеспечивается взрывозащищённым корпусом «И», выполненным в соответствии с требованиями ГОСТ IEC 60079-1-2011.

5.2 Взрывозащищённость анализаторов обеспечивается заключением электрических частей во взрывонепроницаемую оболочку по ГОСТ IEC 60079-1-2011, которая выдерживает давление взрыва внутри неё и исключает передачу взрыва в окружающую взрывоопасную среду.

5.3 Взрывонепроницаемость вводного отделения в месте прохода кабеля обеспечивается уплотнительным кольцом. Высота уплотнительного кольца в сжатом состоянии не менее 12,5 мм.

В неиспользуемые кабельные вводы устанавливается стальная заглушка.

5.4 Для передней и задней крышек имеются фиксаторы, препятствующие отворачиванию. Фиксаторы можно снять только с помощью инструмента (отвёрт-ки).

5.5 На задней крышке анализатора нанесена предупредительная надпись «ПРЕДУПРЕЖДЕНИЕ - ОТКРЫВАТЬ, ОТКЛЮЧИВ ОТ СЕТИ!», а внутри схема подключения электрических цепей.

5.6 Анализаторы имеют внутренний и наружный заземляющий зажим и знаки заземления по ГОСТ 21130-75.

5.7 Пожарная безопасность обеспечивается отсутствием наружных деталей оболочки из пластмассы.

5.8 Электростатическая безопасность обеспечивается отсутствием легкогорючих материалов.

5.9 Фрикционная искробезопасность обеспечивается защитным полимерным покрытием и содержанием магния в алюминиевом сплаве 0,16 % (что меньше допустимого значения 7,5 %).

5.10 Требования к обеспечению сохранения технических характеристик оборудования, обуславливающих его взрывобезопасность, отражены в разделе 12 «Маркировка, упаковка, транспортирование и хранение».

6 Указания мер безопасности

6.1 По способу защиты человека от поражения электрическим током анализатор относится к классу III по ГОСТ 12.2.007.0-75.

6.2 К монтажу и обслуживанию анализатора допускаются лица, знакомые с общими правилами охраны труда и электробезопасности при работе с электроустановками напряжением до 1000 В.

6.3 Корпус анализатора должен быть заземлён.

6.4 Установка и снятие анализатора, подключение и отключение внешних цепей должны производиться при отключённом напряжении питания. Подключение внешних цепей производить согласно маркировке.

7 Параметры предельных состояний

7.1 Категорически запрещается эксплуатировать анализатор при:

- механических повреждениях корпуса, оболочки кабельных вводов;

- отсутствии стопорной скобы и винта;

- отсутствии или повреждении резиновых уплотнений в кабельных вводах;

- отсутствии заземления.

8 Подготовка к работе и порядок работы

8.1 Внешний осмотр.

После распаковки проверить:

- комплектность анализатора в соответствии с паспортом;

- соответствие заводского номера анализатора указанному в паспорте;

- отсутствие механических повреждений анализатора.

8.2 Порядок установки.

8.2.1 Монтаж взрывозащищённых приборов (АЖК-3110.х.И-Ех) (ПП анализаторов АЖК-3101М.х.Э.И-Ех, АЖК-3122.х.И-Ех) во взрывоопасных зонах производить в соответствии с требованиями ТР ТС 012/2011 «О безопасности оборудования для работы во взрывоопасных средах» и главы 7.3 «Правил устройства электроустановок» (ПУЭ, издание 7).

8.2.2 Датчик анализатора устанавливается в вертикальном или горизонтальном положении при помощи привариваемой к ёмкости или трубе бобышки через уплотнительную фторопластовую прокладку.

8.2.3 Собрать схему внешних соединений (Приложение С).

8.2.4 Заземлить корпус анализатора, включить питание и прогреть анализатор в течение 15 минут.

8.3 Анализатор поставляется настроенным в соответствии с заказом. Заводские настройки указаны на наклейке анализатора и в паспорте на анализатор.

8.4 Все анализаторы поставляются с установленным в «0000» кодом доступа к уровням настройки входов « », аналогового выхода « » и интерфейса « » режима «Настройка» (свободный доступ). Для предотвращения несанкционированного изменения настроек рекомендуется службе КИПиА установить отличный от нуля код доступа (Приложение F, п. F.6.5).

9 Режимы работы анализатора

Анализатор имеет два режима работы: «Измерение» и «Настройка».

При включении питания анализатор автоматически переходит в режим «Измерение» и работает по ранее настроенным параметрам.

9.1 Режим «Измерение».

В режиме «Измерение» анализатор преобразует сигнал с датчика в цифровую форму для индикации, а также формирует аналоговый выходной сигнал или отвечает на запросы по локальной сети.

9.1.1 Назначение индикаторов в режиме «Измерение».

Четырёхразрядный семисегментный индикатор служит для отображения значения измеренной проводимости (концентрации) и температуры.

Мигание отображаемого на индикаторе числа говорит о выходе измеряемого параметра за диапазон индикации.

Появление мигающей надписи: или означает выход величины входного сигнала за диапазон отображения индикатора (от -1999 до 9999 без учета положения десятичной точки).

«**RS**» – единичный двухцветный индикатор связи (если цифровой интерфейс имеется в анализаторе):

свечение зеленым цветом – связь по «Modbus» без ошибок;

свечение красным цветом – ошибка связи.

«Т» – единичный индикатор зелёного цвета - отображение на индикаторе измеренной температуры.

9.1.2 Назначение кнопок в режиме «Измерение».

+ - одновременным нажатием кнопок и производится вход в режим «Настройка» (Приложение F, п.F.1).

- при нажатии кнопки производится вход в меню настройки режима отображения измеренного значения на индикаторе: проводимость (концентрация), температура или автоматическое переключение индикации проводимости (концентрации) на температуру и обратно через три секунды.

9.1.3 Меню настройки режима отображения измеренного значения.

Для входа в данное меню в режиме измерение нажать кнопку , при этом на индикаторе ранее установленный режим, например:

Кнопкой или выбрать нужный режим, например:

- режим отображения проводимости (концентрации);

- режим отображения температуры;

0			
9			

- режим автоматического переключения отображения проводимости (концентрации) и температуры.

Для сохранения выбранного режима нажать кнопку . Для выхода без сохранения изменений нажать кнопку .

9.2 Режим «Настройка».

Для удобства в эксплуатации и защиты настроек предусмотрены 4 уровня режима «Настройка», первые два из которых доступны пользователю:

уровень настройки входа (Приложение F, п. F.3) – задание положения запятой на цифровом индикаторе для индикации концентрации, задание количества усредняемых измерений, настройка константы датчика, выбор режима преобразования проводимости, включение (выключение) термо-компенсации, настройка ускорителей фильтров измеренных значений, настройка диапазона входного сигнала, задание температуры привидения для термокомпенсации, задание констант термокомпенсации а и β;

уровень настройки аналогового выхода (Приложение F, п. F.4) – задание диапазона выходного сигнала, границ диапазона индикации для преобразования в выходной сигнал;

уровень настройки интерфейса (Приложение F, п. F.5) – задание параметров интерфейса и протокола локальной сети;

уровень настройки кодов доступа и заводских настроек (Приложение F, п. F.6) – восстановление заводских настроек и смена кода доступа к уровням настройки входов , аналогового выхода и интерфейса .

9.2.1 Все установленные параметры хранятся в энергонезависимой памяти.

9.2.2 Если выход из режима «Настройка» произведён некорректно (например, отключение питания анализатора), сохранение последнего вводимого параметра не производится.

9.2.3 Назначение кнопок в режиме «Настройка».

- влево по меню, возврат, отмена;

- вниз по меню, вправо по позициям цифр;

- вверх по меню, увеличение цифры;

- вправо по меню, выбор и влево по меню с фиксацией.

9.2.4 Алгоритм ввода числовых значений.

Для выбора нужного разряда нажимать , при этом мигающий разряд индикатора будет смещаться вправо:

!

#\$

Для изменения значения данного разряда нажимать , при этом значение разряда будет увеличиваться от 0 до 9 циклически (0, 1, ..., 9, 0, 1 и т.д.). При изменении старшего разряда значение меняется от –1 до 9 (если это допускается

-		-

для данной уставки). Изменение значения любого из разрядов не влияет на остальные разряды, если только значение числа на индикаторе не превышает максимально возможного значения данной уставки.

9.3 Для выхода в режим «Измерение» нажать кнопку

10 Возможные неисправности и способы их устранения

Неисправности	Вероятная причина	Способ устранения
Не исчезает мигающая надпись %&&'	отказ аналоговой части прибора	Отправить прибор в ремонт

11 Техническое обслуживание, поверка, калибровка

11.1 Техническое обслуживание анализатора заключается в периодической проверке внешним осмотром его технического состояния и, при необходимости, чистке электродов датчика.

11.2 Калибровку и, при необходимости, настройку анализатора по растворам необходимо производить по методике калибровки в следующих случаях:

- после ремонта анализатора

- после чистки электродов анализатора;

– в соответствии с межповерочным (межкалибровочным) интервалом, который рекомендуется один год.

11.3 Поверка анализатора проводится по инструкции «Анализатор жидкости кондуктометрический АЖК-31. Методика поверки АВДП.406233.003/1 МП».

12 Маркировка, упаковка, транспортирование и хранение

12.1 На передней панели анализатора указано:

- название предприятия-изготовителя (или торговый знак);
- тип анализатора;

– обозначение единичных индикаторов и кнопок управления.

12.2 На корпусе анализатора для АЖК-3130.х.И-Ех (ПП анализаторов АЖК-3101М.х.Э.И-Ех, АЖК-3122.х.И-Ех) нанесено:

- название предприятия-изготовителя;
- знак утверждения типа средства измерения;
- обозначение защищённости от проникновения пыли и воды «IP65»;
- маркировка вида взрывозащиты «1Ex d IIB T6 Х»;
- диапазон температуры окружающего воздуха.

Допускается указывать дополнительную информацию.

12.3 На задней крышке анализатора нанесено:

- единый знак обращения продукции на рынке государств таможенного союза;

- знак утверждения типа средства измерений;

- название предприятия-изготовителя;

- тип анализатора;

- диапазон измерения;

- вид и диапазон изменения выходного сигнала (заводская настройка);

- заводской номер и год выпуска;

– предупредительная надпись «ПРЕДУПРЕЖДЕНИЕ - ОТКРЫВАТЬ, ОТ-КЛЮЧИВ ОТ СЕТИ!» для АЖК-3130х.И-Ех (ПП анализаторов АЖК-3101М.х.Э.И-Ех, АЖК-3122.х.И-Ех).

12.4 Анализатор и документация помещаются в чехол из полиэтиленовой плёнки и укладываются в картонные коробки.

12.5 Анализатор и документация помещаются в пакет из полиэтиленовый пленки и укладываются в картонные коробки.

12.6 Анализаторы транспортируются всеми видами закрытого транспорта, в том числе воздушным, в отапливаемых герметизированных отсеках в соответствии с правилами перевозки грузов, действующими на данном виде транспорта.

12.7 Транспортирование анализаторов осуществляется в деревянных ящиках или картонных коробках, на которых нанесены манипуляционные знаки по ГОСТ 14192-96: «Осторожно, хрупкое», «Верх, не кантовать». Допускается транспортирование анализаторов в контейнерах.

12.8 Способ укладки анализаторов в ящики должен исключать их перемещение во время транспортирования.

12.9 Во время погрузочно-разгрузочных работ и транспортирования, ящики не должны подвергаться резким ударам и воздействию атмосферных осадков.

12.10 Срок пребывания анализаторов в соответствующих условиях транспортирования – не более 6 месяцев.

12.11 Анализаторы должны храниться в отапливаемых помещениях с температурой от 5 до 40 °C и относительной влажностью не более 80 %.

Воздух помещений не должен содержать пыли и примесей агрессивных паров и газов, вызывающих коррозию деталей анализаторов.

12.12 Хранение анализаторов в заводской упаковке должно соответствовать условиям 3 по ГОСТ 15150-69.

Срок хранения без переконсервации не более трёх лет.

5			
5			

13 Гарантии изготовителя

13.1 Изготовитель гарантирует соответствие анализатора требованиям технических условий при соблюдении потребителем условий эксплуатации, транспортирования и хранения, установленных настоящим РЭ.

13.2 Гарантийный срок эксплуатации устанавливается 18 месяцев со дня ввода в эксплуатацию, но не более 24 месяцев со дня отгрузки потребителю.

13.3 В случае обнаружения потребителем дефектов при условии соблюдения им правил эксплуатации, хранения и транспортирования в течение гарантийного срока, предприятие-изготовитель безвозмездно ремонтирует или заменяет анализатор.

14 Сведения о рекламациях

При отказе в работе или неисправности анализатора по вине изготовителя неисправный анализатор с указанием признаков неисправностей и соответствующим актом направляется в адрес предприятия-изготовителя:

> 600016, г. Владимир, ул. Б. Нижегородская, д. 77, ЗАО «НПП «Автоматика», тел.: (4922) 47-52-90, факс: (4922) 21-57-42. e-mail: market@avtomatica.ru http://www.avtomatica.ru

6			
0			

Рисунок А.1 - Арматура погружная для АЖК-3110.1.И.50...2000 с бобышкой

Продолжение приложения А

Рисунок А.4 - Арматура погружная для АЖК-3110.2.И.200...2000 с фланцем

,			

20			
99			

Приложение D Шифр заказа

Шифр заказа	
АЖК -3110 <u>.х .х .х .х .х .х -х</u>	
Наличие взрывозащиты:	
Ех - с видом взрывозащиты «взрывонепроницаема оболочка» с маркировкой 1Ex d IIB T6 X	Я
Ивет инликатора:	
- HET	
КР - красный	
Зл - зеленый	
Тип выхода:	
- HeT $(0, 5) = A (0, 20) = A (4, 20) = A$	
А - аналоговый выход (05) мА, (020) мА, (420) мА RS - цифровой интерфейс RS-485	
Длина погружаемой части датчика:	
ПР - проточный датчик	
Материал корпуса электронного блока: из люралюминия, с прозрачным стеклом и встроенной	
И индикацией	
Исполнение.	
- обычное	
ВТ - высокотемпературное	
Пианазоны изменения.	
1 (01); (010); (0100); (01000) мкСм/см	
2 (01); (010); (0100); (01000) мСм/см	
K $H_2SO_4 (025) \%; (9599) \%; HCI: (015) \%; HNO_3: (020) \%$ NaOH (010) %; (2040) %; KOH: (020) %; NaCI: (020) %; (0230) r	/л
5 #\$ %&&')&)/) 6))\$6 7 ! , ')))& 8 ')))&' 8 ')))&'' 8 ')))&''' 9 : .	
, 2)))+' ,)	
	9

Приложение Е Перечень ситуаций, идентифицируемых анализатором как ошибка измерения

%&&' - внутренняя ошибка связи цифровой и аналоговой частей анализатора

0				
9				

Приложение F Режим «Настройка»

(Обязательное)

Режим «Настройка» предназначен для задания настройки параметров анализатора. Код доступа к уровню настройки кодов доступа и заводских настроек «rst» целесообразно предоставлять только инженеру КИПиА.

F.1 **Вход в режим «Настройка»** осуществляется из режима «Измерение» одновременным нажатием кнопок и (п.9.1).

При этом на индикаторе появится надпись ()

F.2 Выбрать нужный пункт меню кнопкой или :

() - конфигурация аналогового выхода (если имеется в анализаторе);

- конфигурация аналоговых входов;

)

&* - конфигурация интерфейса (если имеется в анализаторе);

&* - сервис (восстановление заводских настроек и смена кода доступа к уровням настройки анализатора).

Для входа в выбранный пункт меню нажать кнопку . Для выхода в режим «Измерение» нажать кнопку .

(C		-			,			
5 ++++ ;,			-		<				
	II		! """"		,)		
\$) ()		=)			,	!
! 5/ -	;)	0)	, ,		3	-	

F.3 Уровень настройки аналогового входа «, ».

F.3.1 Настройки данного уровня могут быть доступны через последовательный интерфейс (смотри п.F.5).

F.3.2 Вход в режим настройки входов производится из меню выбора уровня настройки (п. F.2) нажатием кнопки на выбранном пункте настройки:) .

При этом на индикаторе появится приглашение ввести код доступа:

.

\$

Кнопками и ввести установленный код доступа, например «-+++ ». Подтвердить код кнопкой . Если код доступа указан неправильно, то анализатор возвращается в режим «Измерение».

Если код доступа правильный, то на экране высветится меню

- задание положения десятичной точки на индикаторе;

- задание числа усредняемых измерений температуры ;

			05
			95

- задание числа усредняемых измерений проводимости;
- &(/ диапазон измерения проводимости;
- включение (выключение) пересчёта измеренной проводимости в концентрацию;

>

)

-)* * настройка константы датчика;
- 0)(11 настройка ускорителя фильтра (акселератора) температуры;
-)(11 настройка ускорителя фильтра (акселератора) проводимости;
- & включение (выключение) температурной компенсации;
- задание температуры приведения;

2 (- задание температурной константы **β**.

? ! &'', " >@['],'&A'& &,A&')

Нажать кнопку для входа в выбранный пункт подменю.

F.3.3 Задание положения десятичной точки на индикаторе «34».

Положение десятичной точки влияет только на индикацию концентрации и задание границ преобразования токового выхода, для индикации проводимости и температуры положение запятой не имеет значения. Для индикации проводимости положение запятой определяется автоматически.

В подменю задания конфигурации аналогового входа (п. F.3.2) нажимать или до появления на индикаторе: .

Нажать кнопку , при этом на индикаторе появится отображение ранее сохранённого положения десятичной точки, например:) .

Кнопкой или выбрать нужное положение:

),),) или)

) (

Для выхода с сохранением изменений нажать кнопку , без сохранения – кнопку .

F.3.4 Задание числа усредняемых измерений «56 » или «567».

В подменю настройки аналогового входа (п. F.3.2) нажимать или до появления на индикаторе:

8 или 8

Нажать кнопку , при этом на индикаторе появится ранее сохранённое значение числа усредняемых измерений, например: **""9** .

Кнопками , задать требуемое значение. Ввод 0 или 1 эквивалентны усреднению за 1 с. Значение 30 эквивалентно усреднению входного сигнала за 30 с. Для выхода с сохранением изменений нажать кнопку , без сохранения – кнопку . 1 . 5 . ;

; %'

e			
0			

			97

Рисунок F.1 - Режим «Настройка» (конфигурация) Начало смотри на предыдущем листе

F.3.5 Задание диапазона измерения проводимости « ? ».

В подменю настройки аналогового входа (п. F.3.2) нажимать или до появления на индикаторе: **&(**/ .

Нажать кнопку , при этом на индикаторе появится ранее сохранённое значение числа усредняемых измерений, например:

- автоматическое переключение диапазонов измерения;

& / - диапазон измерения проводимости (0...1) мкСм/см;

& /О - диапазон измерения проводимости (1...10) мкСм/см;

& /Р - диапазон измерения проводимости (10...100) мкСм/см;

& /Q - диапазон измерения проводимости (0,1...1) мСм/см.

Кнопкой или выбрать нужный диапазон измерения. Для выхода с сохранением изменений нажать кнопку , без сохранения – кнопку .

F.3.6 Задание режима преобразования проводимости в концентрацию «76 ».

В подменю задания конфигурации аналогового входа (п. F.3.2) нажимать или до появления на индикаторе:) .

Нажать кнопку , при этом на индикаторе появится отображение ранее сохранённого варианта преобразования, например:

(*) * - индикация проводимости (без преобразования);

.& - индикация концентрации по установленной на заводе изготовителе характеристике.

Кнопкой или выбрать нужное. Для выхода с сохранением изменений нажать кнопку , без сохранения – кнопку .

F.3.7 Задание константы датчика « @ ».

B < (1) (A)+)

В подменю задания конфигурации аналогового входа (п. F.3.2) нажимать или до появления на индикаторе:)** .

Нажать кнопку , при этом на индикаторе появится:

& - явное задание отношения константы датчика к расчётной константе;

 задание отношения констант методом коррекции значения проводимости.

			00
			90

F.3.7.1 Для явного задания отношения констант кнопкой или выбрать
и нажать кнопку . При этом на индикаторе появится ранее сохранённое значение отношения констант, например: ")""

Кнопками и задать требуемое значение (от -1,999 до 9,999). Для выхода с сохранением изменений нажать кнопку , без сохранения – кнопку .

F.3.7.2 Для задания отношения констант методом коррекции значения проводимости, кнопкой или выбрать и нажать кнопку . При этом на индикаторе появится текущее значение проводимости, например: **"S")9**. Для выхода без сохранения изменений нажать кнопку или .

Если текущее измеренное значение отличается от требуемого, то кнопками и задать требуемое значение, например: **"S")Т**. Для выхода с сохранением изменений нажать кнопку , без сохранения – кнопку .

(*) *

)

F.3.8 Для включения и настройки ускорителя фильтра (акселератора) температуры « **CC** » или проводимости «**7 CC**» в подменю п. F.3.2 нажимать кнопку или до появления на индикаторе:

)(11 или)(11

Нажать кнопку . При этом на индикаторе появится ранее сохранённое состояние ускорителя:

- ускоритель включен,

– ускоритель выключен.

L

Кнопкой или выбрать нужное состояние. Для выхода с сохранением изменений нажать кнопку , без сохранения – кнопку .

F.3.8.1 Если сохраняется состояние , то после нажатия кнопки на индикаторе появится ранее сохранённое значение порога срабатывания ускорителя в процентах от диапазона измерения, например:

....

)

Кнопками и задать требуемое значение (от 1 до 100). Для выхода с сохранением изменений нажать кнопку , без сохранения – кнопку .

=

6/(0C D/0) E

••

,

< -

) ! F[´])

F.3.9 Включение (выключение) термокомпенсации датчика « 7 ».

В подменю задания конфигурации аналогового входа (п. F.3.2) нажимать или до появления на индикаторе: **&** .

Нажать кнопку , при этом на индикаторе появится ранее сохранённое состояние, например:

- термокомпенсация включена;

термокомпенсация выключена.

Кнопками и задать требуемое состояние. Для выхода с сохранением изменений нажать кнопку , без сохранения – кнопку .

F.3.10 Задание температуры приведения « + » для температурной компенсации.

В подменю задания конфигурации аналогового входа (п. F.3.2 нажимать или до появления на индикаторе: ".

Нажать кнопку , при этом на индикаторе появится ранее сохранённое значение, например: **"O9)"**.

Кнопками и ввести новое значение. Для выхода с сохранением изменений нажать кнопку , без сохранения – кнопку .

F.3.11 Задание температурного коэффициента «,65, » α.

В подменю задания конфигурации аналогового входа (п. F.3.2) нажимать или до появления на индикаторе: (.(

Нажать кнопку , при этом на индикаторе появится ранее сохранённое значение, например: ')9"".

Кнопками и ввести новое значение. Для выхода с сохранением изменений нажать кнопку , без сохранения – кнопку .

F.3.12 Задание температурного коэффициента «**D**@ » β.

В подменю задания конфигурации аналогового входа (п. F.3.2) нажимать или до появления на индикаторе: **2** (.

Нажать кнопку , при этом на индикаторе появится ранее сохранённое значение , например: ')9"" .

Кнопками и ввести новое значение. Для выхода с сохранением изменений нажать кнопку , без сохранения – кнопку .

F.3.13 Для выхода в режим «Измерение» нажать кнопку

F.4 **Режим настройки уровня** «, » (если аналоговый выход имеется в анализаторе).

F.4.1 Вход в режим настройки уровня «, » производится из меню п. F.2 нажатием кнопки на выбранном уровне настройки:

При этом на индикаторе появится приглашение ввести код доступа:

......

\$

Кнопками и ввести установленный код доступа, например «-+++ ».

Подтвердить код кнопкой . Если код доступа указан неправильно, то анализатор возвращается в режим «Измерение». Если код доступа правильный, то на индикаторе появится первый пункт подменю:

& U .

F.4.2 Кнопкой или выбрать нужный пункт подменю конфигурации аналогового выхода:

& U - выбор диапазона выходного токового сигнала;

 задание значения предела измерения, соответствующего минимальному значению выходного тока;

- задание значения предела измерения, соответствующего максимальному значению выходного тока.

Нажать кнопку для входа в выбранный пункт подменю, при этом на индикаторе появится первый пункт следующего подменю.

F.4.3 Для выбора диапазона выходного токового сигнала, в подменю п. F.4.2 нажимать кнопку или до появления на индикаторе:

& U

Нажать кнопку . При этом на индикаторе высветится ранее сохранённое значение, например:

"V9 - диапазон (0...5) мА;

"**VO**" - диапазон (0...20) мА;

QVO"- диапазон (4...20) мА.

Кнопкой или выбрать новое значение. Для выхода с сохранением изменений нажать кнопку , без сохранения – кнопку .

F.4.4 Задать значение предела измерения, соответствующего минимальному или максимальному значению выходного тока. Для этого в подменю п. F.4.2 нажимать кнопку или до появления на индикаторе: " или ".

Нажать кнопку . При этом на индикаторе высветится ранее сохранённое значение выбранного параметра, привязанное к заданному положению запятой, например: **"9")"**.

Кнопками и задать новое значение. Возможные значения от «-1999» до «9999» без учета положения запятой. Для выхода с сохранением изменений нажать кнопку , без сохранения – кнопку .

F.4.5 Для выхода в режим «Измерение» нажать кнопку

F.5 Уровень настройки интерфейса « » (если имеется в анализаторе).

F.5.1 Настройки данного уровня, кроме настроек доступа « M », могут быть доступны через последовательный интерфейс. Доступ к настройкам уровней « », « », « » и « » через последовательный интерфейс может быть только запрещён.

F.5.2 Вход в режим настройки интерфейса производится из меню выбора уровня настройки (п. F.2) нажатием кнопки на выбранном пункте настройки: **&***

При этом на индикаторе появится приглашение ввести код доступа:

!

t

Кнопками и ввести установленный код доступа, например «-+++ ».

0			
9			

Подтвердить код кнопкой . Если код доступа указан неправильно, то анализатор возвращается в режим «Измерение». Если код доступа правильный, то на индикаторе появится первый пункт подменю: 2(.

F.5.3 Кнопками и выбрать параметр интерфейса для настройки:

- 2(скорость обмена данными,
- (& адрес анализатора в сети,
- (& контроль чётности,

& - протокол обмена данными,

- символ разделителя для протокола Modbus ASCII,

&*) - доступ к уровням настройки через цифровой интерфейс.

F.5.4 Настройка скорости обмена данными «**D 3** ».

В подменю выбора параметра интерфейса (п. F.5.3) нажимать или до появления на индикаторе:

2(

Для изменения скорости обмена данными нажать кнопку , при этом на индикаторе появится ранее сохранённое значение скорости обмена данными, например:

')O – 1,2 Кбит/с, O)Q – 2,4 Кбит/с, Q)W – 4,8 Кбит/с,

Х)Т – 9,6 Кбит/с,

'X)О – 19,2 Кбит/с,

РW)Q-38,4 Кбит/с,

9S)Т – 57,6 Кбит/с,

"9)О – 115,2 Кбит/с.

Кнопкой или выбрать требуемое значение. Для выхода с сохранением изменений нажать кнопку , без сохранения – кнопку .

F.5.5 Задание адреса анализатора в сети « **3** ».

В подменю выбора параметра интерфейса (п. F.5.3) нажимать или до появления на индикаторе:

(&

Нажать кнопку , при этом на индикаторе появится ранее сохранённое значение адреса, например: **""9** .

Кнопками и задать требуемое значение (от 1 до 247). Для выхода с сохранением изменений нажать кнопку , без сохранения – кнопку .

F.5.6 Настройка контроля чётности интерфейса «4 ».

В подменю выбора параметра интерфейса (п. F.5.3) нажимать или до появления на индикаторе:

(&

Нажать кнопку , при этом на индикаторе появится ранее сохранённое значение контроля чётности, например:

– контроль чётности выключен,

Y – контроль по чётности,

– контроль по нечётности.

Кнопкой или выбрать требуемое значение. Для выхода с сохранением изменений нажать кнопку , без сохранения – кнопку .

F.5.7 Задание протокола обмена данными по интерфейсу «4 ».

В подменю выбора параметра интерфейса (п. F.5.3) нажимать или до появления на индикаторе:

&

Нажать кнопку , при этом на индикаторе появится ранее сохраненный протокол обмена данными по интерфейсу, например:

& – протокол Modbus RTU,

(* Z – протокол Modbus ASCII.

Кнопкой или выбрать требуемый протокол обмена данными. Для выхода с сохранением изменений нажать кнопку , без сохранения – кнопку .

F.5.8 Задание символа разделителя для протокола обмена данными ModBus ASCII « **@4**».

В подменю выбора параметра интерфейса (п. F.5.3) нажимать или до появления на индикаторе:

Нажать кнопку , при этом на индикаторе появится ранее сохранённое значение разделительного символа, например: """ .

Кнопками и задать требуемое значение (от 0 до 255). Для выхода с сохранением изменений нажать кнопку . Для выхода без сохранения изменений нажать кнопку .

F.5.9 Задание доступа к уровням настройки через последовательный интерфейс « **@** ».

В подменю выбора параметра интерфейса (п. F.5.3) нажимать или до появления на индикаторе:

&*)

)

()

Нажать кнопку , при этом на индикаторе появится первый пункт подменю задания доступа: **&*** .

Кнопкой или выбрать нужный пункт конфигурации анализатора для которого необходимо настроить доступ:

- конфигурация аналогового входа;

- конфигурация дискретных выходов (если имеются в анализаторе);

&* - конфигурация интерфейса (если имеется в анализаторе);

&* - сервис (восстановление заводских настроек и смена кодов доступа к уровням « », « » и « »).

Нажать кнопку, при этом на индикаторе появится ранее сохранённая настройка доступа, например:

- доступ разрешён,

- доступ запрещён.

Кнопкой или выбрать нужное значение доступа. Для выхода с сохранением изменений нажать кнопку , без сохранения – кнопку

F.5.10 Для выхода в режим «Измерение» нажать кнопку

F.6 Сервис « Н » (восстановление заводских настроек и смена кода доступа к уровням « », « »и« »).

F.6.1 Восстановление заводских настроек доступно через последовательный интерфейс (смотри п. F.5).

F.6.2 Вход в сервисный режим производится из меню выбора уровня настройки (п. F.2) нажатием кнопки на выбранном пункте настройки:

&*

При этом на индикаторе появится приглашение ввести код доступа:

Кнопками ввести установленный код доступа: «-+++ ». И

Подтвердить код кнопкой . Если код доступа указан неправильно, то анализатор возвращается в режим «Измерение». Если код доступа правильный, то на индикаторе появится первый пункт подменю: &%

F.6.3 Кнопками И выбрать сервис для настройки:

&% - восстановление заводских настроек,

)(- задание кода доступа к уровню « »;

)(- задание кода доступа к уровню « »;

)&* - задание кода доступа к уровню « ».

F.6.4 Восстановление заводских настроек « @ ».

Для восстановления заводских настроек в подменю выбора сервиса (п. F.6.3) нажимать до появления на индикаторе: ИЛИ

[%0

Нажать кнопку , при этом на индикаторе появится запрос подтверждения на восстановление заводских настроек: \%*

Нажать кнопку для восстановления заводских настроек. Для выхода без восстановления заводских настроек нажать кнопку

(GD/([, , ,	D/0H	G) 0	!))	-) E		D0GEI(E	#DEH	
										5
										ເວ

Восстановление заводских настроек целесообразно в следующих случаях:

 – если произведена метрологическая настройка анализатора по неправильному эталонному входному сигналу (анализатор исправен, но показания значительно отличаются от ожидаемых);

 – для возврата к заведомо работоспособному состоянию анализатора при случайном изменении настройки, или если результаты настройки отличаются от ожидаемых.

F.6.5 Задание кода доступа к уровням конфигурирования.

В подменю выбора сервиса (п. F.6.3) нажимать или до появления на индикаторе:

)(- код доступа к уровню настройки аналогового выхода «, »;

)(- код доступа к уровню настройки входов « »;

)&* - код доступа к уровню настройки интерфейса « ».

Для изменения выбранного кода доступа к уровню конфигурирования нажать кнопку , при этом на индикаторе появится ранее сохранённое значение кода, например: """ .

Кнопками и ввести новое значение кода доступа. Возможные значения от «-1999» до «9999». Для выхода с сохранением изменений нажать кнопку , без сохранения – кнопку .

0

5''''

F.6.6 Для выхода из меню сервиса в режим «Измерение», нажать кнопку

6			
0			

Приложение G Ускоритель фильтра

(Справочное)

Усреднение осуществляется по принципу «скользящего окна», а обновление индикации производится два раза в секунду.

Отклонение входного сигнала от среднего значения два раза подряд, на величину большую заданного порога срабатывания ускорителя, приведёт к быстрой смене показаний (среднего значения) на новое значение, равное последнему значению входного сигнала.

Ниже приводится рисунок, поясняющий работу фильтра с ускорителем.

отюлонение, превышающее порог первый раз (после отсутствия превышения, превышения с другим знаком или ускоренного перехода к новому значению);

- отконение, превышающее порог, второй раз подряд (с тем же знаком).

			7
			1

По вопросам продаж и поддержки обращайтесь:

Архангельск +7 (8182) 45-71-35 Астрахань +7 (8512) 99-46-80 Барнаул +7 (852) 37-96-76 Белгород +7 (4722) 20-58-80 Брянск +7 (4832) 32-17-25 Владивосток +7 (4232) 49-26-85 Волгоград +7 (8442) 45-94-42 Екатеринбург +7 (343) 302-14-75 Ижевск +7 (3412) 20-90-75 Казань +7 (843) 207-19-05 Калуга +7 (4842) 33-35-03 Кемерово +7 (3842) 21-56-70 Киров +7 (8332) 20-58-70 Краснодар +7 (861) 238-86-59 Красноярск +7 (391) 989-82-67 Курск +7 (4712) 23-80-45 Липецк +7 (4742) 20-01-75 Магнитогорск +7 (3519) 51-02-81 Москва +7 (499) 404-24-72 Мурманск +7 (8152) 65-52-70 Наб.Челны +7 (8552) 91-01-32 Ниж.Новгород +7 (831) 200-34-65 Новосибирск +7 (383) 235-95-48 Омск +7 (381) 299-16-70 Орел +7 (4862) 22-23-86 Оренбург +7 (3532) 48-64-35 Пенза +7 (8412) 23-52-98 Пермь +7 (342) 233-81-65 Ростов-на-Дону +7 (863) 309-14-65 Рязань +7 (4912) 77-61-95 Самара +7 (846) 219-28-25 Санкт-Петербург +7 (812) 660-57-09 Саратов +7 (845) 239-86-35 Сочи +7 (862) 279-22-65 Ставрополь +7 (8652) 57-76-63 Сургут +7 (3462) 77-96-35 Тверь +7 (4822) 39-50-56 Томск +7 (3822) 48-95-05 Тула +7 (4872) 44-05-30 Тюмень +7 (3452) 56-94-75 Ульяновск +7 (8422) 42-51-95 Уфа +7 (347) 258-82-65 Хабаровск +7 (421) 292-95-69 Челябинск +7 (351) 277-89-65 Ярославль +7 (4852) 67-02-35

сайт: avtomatika.pro-solution.ru | эл. почта: avk@pro-solution.ru телефон: 8 800 511 88 70